Genetic Epidemiology

Our understanding of the structure of human genome is increasing rapidly, yet our knowledge of the function of variations in the human genome and their relationship to common disorders in the general population is still limited. The current developments in the field of genomics will result in large amounts of information on variations in the human genome. One of the most important challenges in epidemiology will be to link these variations to the risk of major disorders in the population. These findings will make a large impact on individualized care of patients as well as public health strategies. This makes genetic epidemiology one of the most exciting fields to work in.

Within the genetic epidemiology unit, we have successfully identified various genes that play an important role in the etiology of major diseases. These genes were sometimes identified through searches through the complete genome. These include genes involved in Parkinson’s disease, hemochromatosis, multiple sclerosis, type 2 diabetes, lipid levels and hypertension. Students can participate in such searches. These include searches for a variety of disorders including Alzheimer’s disease, type 2 diabetes, ADHD, depression, obesity, among other disorders. Furthermore, we have several studies ongoing targeting the role of specific gene in the etiology of disease. Examples of those are the role of mutations in the HFE gene in various disorders including diabetes, cardiovascular disease, neurodegenerative disorders and the role of genes involved in the RAS system in diabetes, cardiovascular disease, depression and cancer. These are also fascinating projects to work in as part of masters training in epidemiology. Finally, student can participate in translational studies as part of the Clinical and public health genomics module.


Theme 1: Gene discovery

Prof. dr. Fernando Rivadeneira

In recent years, there has been major progress in human genomics, particularly in the identification of the genes which are involved in the pathogenesis of major disorders in Western societies. This progress has been achieved by genome wide association (GWA) analyses in which case-control studies have been characterized by dense arrays of genetic markers. Successes have been achieved for a wide range of disorders varying from macular degeneration, Crohn’s disease, multiple sclerosis, rheumatoid arthritis, diabetes and HIV. These developments have led to a stream of novel disease genes, highlighting new aetiological pathways and improving the understanding of the molecular basis of these diseases. The research program of NIHES offers student to participate in this rapidly developing field, performing hands-on analysis of data available with the Genetic epidemiology unit. This may concern genome wide association studies or studies of candidate genes/pathways with multiple outcomes. The research program of the genetic-epidemiology group combines successfully methodological and empirical research. The methodological research program focuses on several aspects of genome wide association studies including meta-analysis and gene interaction. The statistical methods group targets both the design and the analysis of genomic research.